276 research outputs found

    Influence of Manganese(II) and Fluoride Ions on the Kinetics and Mechanism of Oxidation of DL-α-Alanine by Permanganate Ion in Acid Perchlorate Media

    Get PDF
    The kinetics of permanganate oxidation of DL-a-alanine in aqueous perchloric acid solution, at a constant ionic strength of 2.0 mol dm , was investigated spectrophotometrically. The reaction was found to be second- -order overall kinetics in the concentration of both reactants in the slow initial stage, but the second-order kinetics are not, however, maintained throughout the relatively fast final stage of reaction. Addition of Mn2+ ion was found to accelerate the oxidation reaction, whereas a retardation in the reaction rate was observed on addition of F" ion. This fact leads to the prediction that Mn(III) and/or Mn(IV) play an important role in the reaction kinetics. A tentative mechanism consistent with the kinetics is discussed

    A Direct Integral Pseudospectral Method for Solving a Class of Infinite-Horizon Optimal Control Problems Using Gegenbauer Polynomials and Certain Parametric Maps

    Full text link
    We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method transforms the IHOCs into finite-horizon optimal control problems (FHOCs) in their integral forms by means of certain parametric mappings, which are then approximated by finite-dimensional nonlinear programming problems (NLPs) through rational collocations based on Gegenbauer polynomials and Gegenbauer-Gauss-Radau (GGR) points. The paper also analyzes the interplay between the parametric maps, barycentric rational collocations based on Gegenbauer polynomials and GGR points, and the convergence properties of the collocated solutions for IHOCs. Some novel formulas for the construction of the rational interpolation weights and the GGR-based integration and differentiation matrices in barycentric-trigonometric forms are derived. A rigorous study on the error and convergence of the proposed method is presented. A stability analysis based on the Lebesgue constant for GGR-based rational interpolation is investigated. Two easy-to-implement pseudocodes of computational algorithms for computing the barycentric-trigonometric rational weights are described. Two illustrative test examples are presented to support the theoretical results. We show that the proposed collocation method leveraged with a fast and accurate NLP solver converges exponentially to near-optimal approximations for a coarse collocation mesh grid size. The paper also shows that typical direct spectral/PS- and IPS-methods based on classical Jacobi polynomials and certain parametric maps usually diverge as the number of collocation points grow large, if the computations are carried out using floating-point arithmetic and the discretizations use a single mesh grid whether they are of Gauss/Gauss-Radau (GR) type or equally-spaced.Comment: 33 pages, 19 figure

    Direct Integral Pseudospectral and Integral Spectral Methods for Solving a Class of Infinite Horizon Optimal Output Feedback Control Problems Using Rational and Exponential Gegenbauer Polynomials

    Full text link
    This study is concerned with the numerical solution of a class of infinite-horizon linear regulation problems with state equality constraints and output feedback control. We propose two numerical methods to convert the optimal control problem into nonlinear programming problems (NLPs) using collocations in a semi-infinite domain based on rational Gegenbauer (RG) and exponential Gegenbauer (EG) basis functions. We introduce new properties of these basis functions and derive their quadratures and associated truncation errors. A rigorous stability analysis of the RG and EG interpolations is also presented. The effects of various parameters on the accuracy and efficiency of the proposed methods are investigated. The performance of the developed integral spectral method is demonstrated using two benchmark test problems related to a simple model of a divert control system and the lateral dynamics of an F-16 aircraft. Comparisons of the results of the current study with available numerical solutions show that the developed numerical scheme is efficient and exhibits faster convergence rates and higher accuracy.Comment: 27 pages, 24 figure

    Infrared and Thermal Analysis of Vanadyl(II) Barbiturate Complex

    Get PDF
    An usual method for the preparation of vanadyl(II) barbiturate complex was performed under the chemical reaction of vanadyl(II) sulfate with barbituric acid (H2L) and formulated as: [VO(HL)2].2H2O. This new barbiturate complex was synthesis and characterized by elemental analysis, molar conductivity, magnetic measurements, infrared spectral method and simultaneous thermal analysis (TG/DTG) techniques. The molar conductance measurements proved that barbiturate vanadyl(II) complex is non-electrolytes. The infrared spectra of the barbituric and vanadyl(II) complex are used to identify the mode of coordination. Kinetic and thermodynamic parameters (E*, ΔH*, ΔS* and ΔG*) of H2L ligand and its complex are estimated according to the DTG curves.Â

    Biogenic volatile compounds of activated sludge and their application for metal bioremediation

    Get PDF
    Heavy metals pollution is nowadays one of the most important environmental concerns. This paper illustrates the employment of the biogenic volatile compounds generated during the aerobic growth of activated sludge on raw domestic wastewater for heavy metals removal. Most of the tested metals even as individual or mixed metal species (Co, Cu, Cd, Fe, Hg, Ni, Mn, Pb and Zn) were potentially transformed into insoluble precipitates and then separated out of their solutions. The Fourier-transform infrared (FTIR) analysis has identified some organosulfur groups (thiol, disulfide and thiocarbonyl), in addition to amine group in the metal precipitates. This study highlighted the application of the microbial volatile metabolites for heavy metals bioremediation in a powerful, cost effective and eco-friendly bioprocess.Key words: Application, activated sludge, biogas, metals, bio-precipitatio

    Dynamic characterization of 3D printed lightweight structures

    Get PDF
    This paper presents the free vibration analysis of 3D printed sandwich beams by using high-order theories based on the Carrera Unified Formulation (CUF). In particular, the component-wise (CW) approach is adopted to achieve a high fidelity model of the printed part. The present model has been used to build an accurate database for collecting first natural frequency of the beams, then predicting Young's modulus based on an inverse problem formulation. The database is built from a set of randomly generated material properties of various values of modulus of elasticity. The inverse problem then allows finding the elastic modulus of the input parameters starting from the information on the required set of the output achieved experimentally. The natural frequencies evaluated during the experimental test acquired using a Digital Image Correlation method have been compared with the results obtained by the means of CUF-CW model. The results obtained from the free-vibration analysis of the FDM beams, performed by higher-order one-dimensional models contained in CUF, are compared with ABAQUS results both first five natural frequency and degree of freedoms. The results have shown that the proposed 1D approach can provide 3D accuracy, in terms of free vibration analysis of FDM printed sandwich beams with a significant reduction in the computational costs

    Voltammetric studies of some azo compounds derived from 4-methyl-6,7-dihydroxy coumarin in microemulsion and aqueous media

    Get PDF
    The cyclic voltammetric(CV) behavior of some azo compounds based on coumarin derivatives  was investigated in microemulsion systems and in aqueous solutions. The obtained results indicated that these compounds undergo an irreversible 4-electron reduction step leading to cleavage of the N=N center with the formation of amine compounds in all media. The effect of medium on the CV parameters was discussed. The total number of electrons involved in the reduction process was determined by controlled potential coulometry. Also, The effect of substituents on the electrode reaction pathway and the kinetic parameters of the electrode process were calculated and discussed. Based on the data obtained the electroreduction mechanism was suggested and discussed

    In situ acetonitrile/water mixed solvents: An ecofriendly synthesis and structure Explanations of Cu(II), Co(II), and Ni(II) complexes of thioxoimidazolidine

    Get PDF
    ABSTRACT. The bidentate oxoacetate derivative of 4-oxo-2-thiazolidine 4ligand (L1) synthesized by the reaction of 1-(1-(Pyridin-3-yl)ethylideneamino)-2-thioxoimidazolidin-4-one 3 with diethyl oxalate with both traditional and microwave irradiation methods. The metal ion complexes of mixed ligands L1 and L2 (acetonitrile) were prepared by condensation a solution mixture of Co(II) Ni(II), and Cu(ІІ) metal chloride salts with the ligands (L1 and L2) in distilled water with stirring. The complexes were characterized by the micro analysis (C, H, N), chloride content, FT-IR, UV-Vis spectra, thermal gravimetric analysis (TGA), molar conductivity as well as magnetic susceptibility measurement. According to the obtained data the suggested coordination geometries of these complexes were suggested as octahedral structure. All the synthesized complexes were found to be electrolyte due to the presence of chloride ions outside the coordination sphere. The antibacterial activity of the L1 ligand and their metal ion complexes have been studied by screening against various microorganisms, G+ bacteria (Bacillus subtillis, Streptococcus pneumonia, and Staphyloccoccus aurease), G-bacteria (E. coli, and Pesudomonas Sp.) and fungi (Aspergillus nigaer, and Penicillium Sp.). The metal ion complexes gave the formulae: [M(L1)(L2)2(H2O)2]Cl2where M = Co(II) Ni(II), and Cu(ІІ).                     KEY WORDS: Imidazolidine, Microwave irradiation, Transition metals complexes, Biological activity   Bull. Chem. Soc. Ethiop. 2021, 35(2), 351-364. DOI: https://dx.doi.org/10.4314/bcse.v35i2.1

    Solvent free synthesis of hydrazine carbothioamide derivatives as a precursor in the preparation of new mononuclear Mn(II), Cu(II), and Zn(II) complexes: Spectroscopic characterizations

    Get PDF
    ABSTRACT. Over the last few years considerable attention has been devoted to the study of Schiff base complexes of metal(II) containing nitrogen, oxygen and sulfur donor ligands due to their diverse biological activities. Therefore, the Schiff base thiosemicarbazone derivatives of 2-(2-hydroxy-3-methoxybenzylidene) hydrazine carbothioamide (HL1) and 2-(4-bromo-2-hydroxy-3-methoxybenzylidene) hydrazine carbothioamide (HL2) were synthesized with solvent free technique using silica gel as material support for the reaction. The structures of the precursor’s organic products confirmed with their 1H, 13C NMR, IR and microanalysis data. Six new manganese(II), copper(II), and zinc(II) complexes of HL1 and HL2 2-(2-hydroxy-3-methoxybenzylidene) hydrazinecarbothioamide derivatives with the general formulation [ML1Cl] and [ML2Cl], where M = Mn2+, Cu2+, and Zn2+ were prepared and well discussed by using elemental analyses, magnetic moments, molar conductance, infrared and electronic spectral techniques. The assignments data of spectroscopic analysis confirm that the synthesized thiosemicarbazone Schiff bases of acts as a tridentate ligand as sulfur-oxygen-nitrogen donating atoms. The values of magnetic moments agreed with the data of electronic spectra which both suggested a four-coordination geometry of the synthesized complexes.                     KEY WORDS: Schiff base, Thiosemicarbazone, Manganese(II) complex, Copper(II) complex, Zinc(II) complex   Bull. Chem. Soc. Ethiop. 2021, 35(2), 413-424. DOI: https://dx.doi.org/10.4314/bcse.v35i2.1

    Spectrophotometric and Thermal Studies of the Reaction of Iodine with Nickel(II) Acetylacetonate

    Get PDF
    The reaction of iodine (acceptor) and nickel(II) acetylacetonate (donor) was studied photometrically in different solvents such as chloroform, dichloromethane and carbon tetrachloride at room temperature. The results indicate the formation of a 1: 1 charge-transfer complex in each solvent and the iodine complex is formulated as the triiodide species [Ni(acac)2]2I+.I3-, based on the characteristic electronic absorptions of the I3- ion at 361 and 285 nm, as well as on the far infrared absorption bands characteristic of the I3- ion with C2v symmetry. These bands are observed at 132, 101 and 84 cm-1 and are assigned to na(I-I), ns(I-I) and d(I3-), respectively. The values of the equilibrium constant (K), absorptivity (e) and oscillator strength (f) of the iodine complex are shown to be strongly dependent on the type of solvent used. The important role played by the solvent is suggested to be mainly due to the interaction of the ionic complex with the solvent. The proposed structure of the new solid triiodide charge-transfer complex reported in this study is further supported by thermal and mid-infrared measurements. (South African Journal of Chemistry: 2003 56: 10-14
    • …
    corecore